PHYSICAL REVIEW E, VOLUME 65, 031307
Urn model of separation of sand
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We introduce an urn model that describes spatial separation of sand. In this dynamical model, in a certain
range of parameters spontaneous symmetry breaking takes place and equipartitioning of sand into two com-
partments is broken. The steady-state equation for an order parameter, a critical line, and the tricritical point on
the phase diagram are found exactly. The master equation and the first-passage problem for the model are
solved numerically and the results are used to locate first-order transitions. Exponential divergence of a certain
characteristic time shows that the model can also exhibit very strong metastability. In certain cases character-
istic time diverges a®\?, whereN is the number of balls and= 3 (critical line), 3 (tricritical point), or 3
(limits of stability).
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[. INTRODUCTION The main goal of the present paper is to define and ana-
lyze such a model. Our model is a certain generalization of
Recently, granular systems have been intensively studiethe urn model introduced by Ehrenfd$f. In the Ehrenfest
using methods of statistical physics. The main motivation ofmodel one has balls that are distributed between two urns
this research is to get a basic understanding of these technand certain dynamical rules according to which balls can
logically important materials whose behavior, however, verychange their location. The Ehrenfest model greatly contrib-
often appears elusive and mysterigds?]. uted to the understanding of some basic notions of statistical
One of the classical experiments in this field concerns thenechanics such as the equilibrium or approach to the equi-
spatial separation of shaken sdi@dl In this experiment one librium. Various modifications of this model were examined
uses a box that is divided into two equal compartments by 810].
wall that has a narrow horizontal slit at a certain height. At first sight it seems natural that the Ehrenfest model
When the box is filled with a sand and shaken, one observesould provide an approximate description of experiments
that under certain condition®.g., frequency and amplitude with shaken sand. However, none of its generalizations de-
of shaking one compartment of a box is preferentially filled scribed in the literature exhibits a spontaneous symmetry
with sand. Theoretical arguments to understand how théreaking[11]. The modification that we propose does exhibit
symmetry breaking arises in this experiment were given bya spontaneous symmetry breaking. Although the model is
Eggers[4]. In his approach, Eggers studied a continuousrather simple it exhibits a rich behavior. In addition to having
model based on partial differential equations that takes int@a line of continuous transitions, the model has a tricritical
account certain particular characteristics of shaken granulgroint and a line of discontinuous transitions. The discontinu-
systemg5]; namely, the fact that effective temperature of aous transitions are screened by very strong metastability. The
granular system decreases when the density of particles imxistence of this, in fact unobservalffiue to metastability
creases. This, at first counterintuitive, feature of granular systransition in our dynamical model requires, however, some
tems is now understood as a result of inelastic collision&comments. In equilibrium systems it is the free energy that
between particles that effectively cool the systefh This  unambiguously determines the phase, which is stable for a
feature is also responsible for the symmetry breaking in thgjiven set of parameters. For our dynamical model we do not
experiment with shaken sand. Indeed, with nonequal distriknow how to calculate the free energy. Nevertheless, certain
bution of sand the temperature in the compartment with théeatures enabled us to locate the discontinuous transitions in
majority of particles is substantially reduced. Consequentlypur model. Namely, probability distribution of the order pa-
particles from this compartment are less likely to cross theameter exhibits characteristics that are typical to equilibrium
slit. Eggers has shown that a continuous phase transition asystems with discontinuous transitions. Additional evidence
companies the symmetry breaking. The approach used hyf such a transition in our model comes from the analysis of
Eggers was generalized for a larger number of compartmentsharacteristic times, which we determine solving numerically
separating the box. It was shown that in such a case thehe first-passage problem.
phase transition becomes discontinu@8is Our paper is organized as follows. In Sec. II, we introduce
Eggers’s model is, however, quite complicated and itshe model and examine its steady-state properties. In Sec. lll,
analysis must be supplemented with some simplifying asfrom the solution of the master equation we analyze the
sumptions. The analysis of fluctuations or dynamical propersteady-state probability distribution and fluctuations in the
ties seems to be particularly difficult for this model. A pos- model. Section 1V is devoted to the metastable properties and
sible alternative might be to examine a different, presumablyharacteristic times obtained from the solution of the first-
simpler model, which would nevertheless grasp the essengessage problem. Conclusions and possible extensions of our
of the phenomena. work are discussed in Sec. V.
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Il. MODEL AND ITS STEADY STATE

Our model is defined as follow$ particles are distrib-
uted between two urn& andB and the number of particles
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in each urn is denoted ad, and Ng, respectively Np
+Ng=N). Particles in a given urn are subject to thermal
fluctuations and the temperatufeof the urn depends on the
number of particles in it. To mimic the effect that a larger 0.1
number of particles leads to a smaller temperature, we use

the following rule: 005

£ 0I5t

T(nag)=Tot+A(1—nNap), (1) 0

wheren, g=Nu g/N is a fraction of a total number of par-
ticles in a giveh urn and, and A are positive constants. FIG. 1 Phase diagram of the_urn model. Regions | anq Il are
With such a choice, temperatures of urns changes linearl ymm,e”'cm(??vz)oti]a”d asy”:m;t”d@¢??¢phhasesz reSp?Ct'tVi'?/-

; n region e symmetriclasymmetrig phase is metastable
e T &t Ianlr YSiem et The sl e s crcl I, The ek o e
is very complicated and depends on certain parameters su&) the line of first-order phase transitions. The tricritical point
as density of particles or the type of driviri§]. For the  (5.(¥3—1)/3) isdenoted as).
experiment with separation of sand certain arguments su
gest thatT ~ n;’ZB would be more suitable4], however, in-
dications of the linear dependence like Ef) can also be
found in the literaturd6]. With a choicevan,;zB the loca-
tion of the critical point changes with. As expected on
general grounds, the observed behavior for fihites only a
crossover and a well-defined phase transition exists only in
the limit N—oo, Our choice(1), leads to results that are well
defined in the thermodynamic limiN—c. However, it
would be interesting to examine other choices too.

Next, we assume that particles within a given urn obey

g[i-ons fromA to B equals to the flux froniB to A. It is easy to
realize that since the selected particles are uncorrelated, the
above requirement can be written as

1 1
<'\'A>exp[T(<NA/N>) :<NB>GXF{T(<NB/N>)}‘ “)

Using the parametefe) and the relatiorN,y+Ng=N, Eq.
(4) can be written as

the standard Maxwell-Boltzmann distribution. It means that| ~ + (¢) |ex —1 :(E_<6> ex —1 )
their distribution changes with the heightabove the bottom T E +<E>) 2 T(E _<€>)
of an urn as 2 2
(5)
MgNa 5 —mgz
Pas(2)= T(naB) ex;{ T(nag)|’ (2 Of course, Eq(5) admits symmetric solutiote)=0 for any

To and A. However, a physically satisfactory solution must
wherem is the mass of a particle arglis the gravitational be stable with respect to fluctuations. To make the stability
acceleration. One can easily calculate that the fraction ofinalysis ofe=0 solution of Eq.(5), we have to expand it in
particles obeying distributio2), which are above a certain powers ofe. Equating linear terms we obtain that the critical
heighth is given as exp-mghT(n,g)]. Next, we define dy- line that separates stable and unstable regions for symmetric
namics of our model as followsi) One of theN particles is  solution is given as
selected randomlyii) With probability exp—mghT(nag)]
the selected particle changes urns, g is the fraction of
particles present in the urn of the selected partidie the
following, we assume that temperature is measured in unit$his line is plotted as a solid line in Fig. 1.
such thatmgh=1. It means that our model is parametrized ~What is more interesting, however, H§) has also asym-
only by T, andA. The Ehrenfest model is recovered in the Metric solutions with(e)# 0. Although such solutions can-
limit of infinite temperature where every selected particlenot be written in a closed form, they can be easily deter-
changes urns. mined numerically. An example of such a solution is shown

We definee as a measure of the difference in the occu-in Fig. 2. In addition, expanding Eq5) in powers of(e),
pancy of the urns, one can easily check that in the vicinity of the critical point
|(€)|~(To—T§)¥2 which recovers an equilibrium mean-
field exponentB=1/2 (we assume thah is kept constant

It turns out, however, that in a certain region of phase
diagram both symmetric and asymmetric solutions are stable
For our model, one can find a simple, but exact equation thaisee Fig. 1 It suggests that in this region a line of discon-
determines the time average) in the steady state. Indeed, tinuous transition should exist. This line would meet a criti-
in the steady state the flux of particles changing their posical line at a certain point which, by analogy with equilibrium

TS=VAI2— A/2. (6)

Na—Ng

€=
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FIG. 2. Absolute value of the order parameies| as a function
of Ty for A=0.5. The solid line corresponds to the numerical solu-
tion of Eq. (3). Monte Carlo simulations were made fbir=500
(+) and 5000(*).

systemg12], can be called a tricritical point. Location of this
point can be easily determined from E§). Indeed, required
that the third-ordefin €) coefficients are the sanj&3] and
taking in account Eq(6), we obtain the tricritical point is
located atA=2, To=(/3—1)/3. However, it is by no
means obvious how to determine the line of discontinuous
transitions in our model. In equilibrium systems, one can
calculate the free energy of each phase and this line is deter-
mined from the condition that the free energy of both phases
are equal. Our model is not an equilibrium system and this
procedure cannot be used. Nevertheless, as we will show
below, behavior of certain quantities show striking similarity
to equilibrium counterparts. With this observation we will be
able to locate discontinuous transitions in our model. To ad-
dress this problem, we have to go beyond the steady-state

0.05
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Eq. (5), which is the subject of the following section.

IIl. MASTER EQUATION

A=05, T=0.4
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For our urn model one can write evolution equations for kg, 3. probability distributiorp[ N(e+ %),t] obtained as a nu-

the probability distributiorp(M,t) that in a given urn(say
A) at the timet there areM particles. These equations easily

follow from the dynamical rules,

N 1
p(M,t+1)= P(M—1t)w(N—M+1)

N
M+1
+Tp(M+l,t)w(M+1)+p(M,t)

N—M
N

M
X W[l—w(M)]+
for M=1,2,...N—-1,

1
p(Ot+1)=P(1Hw(1)+p(0H[1-w(N)],

1
PN, t+1)=GP(N=1Ha(1)+p(N,h[1-w(N)],

[1-o(N=M)]

(@)

merical solution of Eq(7) in the long-time limit (N=200).

where (M) =exd —1/T(M/N)]. For o(M)=1 the above
equation are equivalent to the ones of the Ehrenfest model
[9]. Supplementing the above equations with initial condi-
tions one can solve them numericdlly4]. Examples of such
solutions in a long-time limit are shown in Fig. 3.

As expected, one finds a single- and double-peak distri-
bution in regions | and Il, respectively. The width of these
peaks decreases with the number of partibleShe behavior
of the probability distribution in regions Il and IV is how-
ever more complicated. Although for small it has three-
peak structure, the shape changes in the Iitoo. The
final distribution depends whether the parameterand T,
are in region Il or IV. In region lll, for increasing\, the
central peak diminishes and in the limht—o we obtain a
two-peak distribution. On the other hand, in region IV only
the central peak survives in the thermodynamic limit. As we
will show, a line that separates these two regions can be
interpreted as a line of discontinuous transitions. Before we
approximately locate this line, let us study fluctuations of the
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FIG. 4. Inverse of the susceptibility * as a function ofT, for FIG. 5. Scaled susceptibility/N as a function ofA for T,

A=0.5. The solid line corresponds to the numerical solution of Eq.=0.2 obtained from the numerical solution of Eq) for N=50,
(3) for N=5000. Monte Carlo simulations were made fbr 100, 200, 300, and 500.

=5000

(+). In the asymmetric phasel§<0.25) to calculatec we used

only a half of the probability distribution similarity to equilibrium discontinuous transitions. It is

known that such transitions are usually accompanied by

order parameter. Since we know the probability distribution,metaStablllty' In the present section, we examine such effects

these fluctuations can be calculated numerically, without™ oY model.

making additional assumption4]. Using the variance of the _The most transparent |_npllcat|on of metas_tab_lllty is hyster-
. . esis. That our model exhibits such a behavior is clearly seen
order parameter we define the susceptibiktyas

in Fig. 6. One can see, that upon increasingthe system
N N 2 prepared in the asymmetric state remains in this state up to
[ > i2p(i ,m)—[E ip(i ’oo)} ] , A~1.7 that is close to the limits of stability of this statee
i=0 =0 Fig. 1. On the other hand, wheh decreases the symmetric
(8) state persists up tA~ 1.1 that is again close to the limits of
stability of symmetric phase. Simulations show that the
wherep( ... ,»*) denotes the steady-state probabilities ob-range of the hysteresis only slightly depends on the system
tained from Eqgs(7). Susceptibility is known to diverge at size and the simulation time. For large system sizes the
the continuous phase transition. Our calculations for model will persist in the initial state until the limits of sta-
=0.5 confirm such a behavidFig. 4). For T;>0.25 the bhility of this state are reached, as calculated from the steady-
inverse susceptibilit " decays linearly that impliey=1 state equatior{5). Such a behavior indicates a very strong
(mean-field valug For T(<0.25(asymmetric phagehe be-  metastability. As we will show below, in regions IIl and IV
havior is less clear but we also expect a linear decay df of the phase diagram certain characteristic times diverge ex-
To check our steady-state and master-equation calculgonentially with the system size that corresponds to the bro-
tions we performed Monte Carlo simulations that are alsdken ergodicity(i.e., dynamical phase space of the model is
presented in some cases. The implementation of this methatbcomposed into disconnected sedtorgt us notice that in

k=N (D=5

for the present model is rather straightforward. (short-ranged equilibrium systems metastability has always
Let us notice that the behavior of the probability distribu-

tion as seen in Fig. 3 bears some similarity to equilibrium 06

systems. In particular, it is known that the simultaneous ex-

istence of peaks of both phases is an indicator of the first- 051

order phase transitiorfd5]. Although our model is defined
only using dynamical rules and thus has no free ené¢agy
least as defined for equilibrium systenitsdoes exhibit some
other features typical to equilibrium systems. To precisely
locate the transition point we calculated the scaled suscepti- 021
bility «/N. We expect that when only a single peak survives
«/N vanishes, while it remains positive in the double-peak
region. ForT,=0.2 the obtained result§-ig. 5 locate the 0 N
transition aroundA=1.31. As we will see in the following 04 06 08 1 12 14 16 18 2 22 24
section there is also a dynamical indicator of this transition. To

04

l<e>l

03 r

0.1 -

FIG. 6. Absolute value of the order paramegs)| as a function

IV. METASTABILITY AND THE CHARACTERISTIC TIME of A for Ty=0.2 calculated using Monte Carlo simulations for
=2000. Two runs were made with increasing (+) and decreasing
Analysis of the probability distribution for our dynamical (), respectively. Due to strong metastability no sign of the tran-
model, which was done in the preceding section shows somsition exists forA =1.31.
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a finite lifetime and longer simulations or larger system size 14
shrink the hysteresis.

To examine the metastable properties of our model further
we will calculate certain characteristic times. It is known that o
for urn models some of these quantities can be calculated as
the so-called first-passage problem. We will use a similar
approach. More specifically, let us consider a configuration
where there arél andN—M balls in urnA and B, respec- 4t
tively (N even. Now, we define an average time&M,N
—M) needed for such a configuration to reach a symmetric
configuration M =N/2). From the dynamical rules of our 0
model one finds that(M,N—M)’s obey the followingN/2
linear equationgto simplify notation we omit the second
argument inr's): FIG. 7. Characteristic time(N) as a function ofA for (from the

bottom N=50, 100, 200, and 300.

log;[*(N)]

0 0.5 1 L5 2
A

T(N)=o(N)[7(N=1)+1]+[1-w(N)][7(N)+1],
In Fig. 7, we present thA dependence for(N). This is
the lifetime of totally asymmetric solution. Its rapid increase
(as a function ofN) in certain range ofA indicates the sta-
N-1 1 bility of the asymmetric solution.
=4 T To provide more details on the stability of this solution we
XLr(N)+1]+ 1 N ©(N=1) N (1) have to look at the size dependence of the characteristic time
and the results are shown in Figs. 8 and 9. One cariFSge
8) that the limits of stability of asymmetric solution, which
for T;=0.2 equalsA=A(0.2)=1.7440675. . ., separates
two regimes. ForA>A_(0.2) 7(N) approaches a finite
N—M value for increasingN, while it diverges forA<A.(0.2).
o(N—M) From Fig. 9 one can conclude that far<A.(0.2), 7(N)
diverges exponentially fast witN. It confirms our previous
M N—M observations, based on Monte Carlo simulations, that a given
I-geM-—y— phase persists up to the limits of its stability.
From Fig. 10 it follows that at the limits of stability(N)
increases but as a power Nf From the slope of these data
[7(M+1)+1], we estimate that both foF,=0.2 and 0.15~ N3, A differ-
ent exponent governs the increaserf) along the critical
line (6) [18]. In this case we find-(N)~N2 while at the
tricritical point N3 increase is observetsee Fig. 10 It
would be desirable to explain such simple power laws using
analytical arguments.
The above results concern the behavior@). We have
Xw(0.N—=1)[7(0.5N+2)+1] shown that this quantity can be used to locate the critical line
or the limits of stability of the asymmetric solution. How-

T(N—1)=le(N—l)[r(N—2)+1]+%w(l)

X[7(N—1)+1],

T(M):%M(M)[T(M—l)‘Fl]-i-

X[7(M+1)+1]+

Xw(N—M)

1 1
(0.5N+1)=| 0.5+ w(O.5N+1)+<0.5— N)

1
+|1-| 05+ 1] @(0.5N+1)

4

—(0.5—% w(O.SN—l)} 35|

X[7(0.5N+1)+1]. ©)]

logyo[v(N)]

Similar equations can be written for the Ehrenfest model
[16].

We were unable to write an explicit solution of the above 2
set of equations. However, its tridiagonal structure greatly
simplifies its numerical solution. In particular, the so-called 15 - - - - - - s
Gaussian elimination can be used to calcutéerecursively 2o s s A s 3
[17]. Since implementation of this algorithm is straightfor- B0
ward we present only final results. Our unit of time corre-  FIG. 8. Characteristic timer(N) as a function ofN for T,
sponds to a single on average update per ball, i.e., we divide 0.2 and (from the lef) A=1.65, 1.7, 1.72, 1.735, and 1.74,
the time 7 calculated from Eqs9) by N. A.(0.2)=1.7440675...,1.77, and 1.8.
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FIG. 9. Characteristic timer(N) as a function ofN for T, FIG. 11. Distribution of characteristic time$M) as a function

=0.2 and(from the lefy A=1.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8.  of M calculatedT,=0.2 and(from the top A=0.9, 1.2, 1.5.

ever, this quantity does not provide any indication of the V. CONCLUSIONS
discontinuous phase transition that we located between re-
gions Il and IV on Fig. 1. To have a dynamical indication of  |n the present paper, we examined an urn model that un-
this transition we have to look for other characteristic timesdergoes a symmetry-breaking transition. Our work was mo-
First, let us noticgFig. 11) that in region Il the distribution  tivated by recent experiments on the separation of shaken
of 7’s as function ofM is rather flat that means that there is sand. The proposed model exhibits a rich behavior
basically a single time scale in the model. In regions Il and(continuous/discontinuous transitions, a tricritical point,
IV, however, one can see a more pronounced variability ofnetastability and its properties could be reliably deter-
7(M). In Fig. 12, we show that(0.5N+1) (which is the  mined. There are experimental indications that in the three-
shortest of ourr’s) can be used to locate a discontinuouscompartment case the separation of shaken sand is a discon-
phase transition. Indeed, this quantity increases exponefinuous transitior{8]. However, due to strong metastability
tially fast with N for A <1.31 and remains bounded for larger only the hysteretic behavior is observed, similarly as in our
values ofA. The change of behavior of(0.5N+1) coin-  simulations in Fig. 6. Our work suggests, that there are some
cides, within our numerical accuracy, with the change of theindicators (probability distributions, characteristic times
probability distribution as shown in Fig. 5. which could be used to locate a discontinuous transition in

Let us also notice that the time scale reached in the nusuch systems. It would be interesting to look for such indi-
merical solution of Eq(9) (~ 10 is much larger than what cators in experimental systems.
is accessible using Monte Carlo simulations. The main limi- As an extension of our work, one can examine models
tation in our calculations is finite accuracy of the computa-with a different relation between the effective temperature
tions. Using longer representations of real numifars used  and the number of particles or models with larger number of
the FORTRAN real*8 typg one can study much larger time compartments. Even further extensions are related with a
scales. much different interpretation of our model. One can imagine

that two compartmenté and B are two groups of people
s - (e.g., supporters of certain presidential candidat¢seems
1 reasonable to assume that under certain conditions a larger

number of people in a given group will increase attractive

log;o[*(N)]
w

2_\/
15 E E

2 2.5 3 35 4 4.5 5 55 6
log,o(N)

log;oft(0.SN+1)]

FIG. 10. Characteristic time(N) as a function oN calculated

at (A,Ty) equal to (solid lines, from the top (0.25,/0.25/2 2 . . .
—0.25/2), (0.5,0.25, (1.7440675,0.2 and (6.77543 . . .,0.15. 0 500 1000 1300 2000

For two upper lines the pointsA(Ty) are on the critical ling6),

while for bottom ones, they are on the lines of the limits of stability =~ FIG. 12. Characteristic time(0.5N+ 1) as a function oN cal-
of the asymmetric solution. The dotted line corresponds to the triculatedT,=0.2 and(from the top A=1.27, 1.29, 1.30, 1.31, and
critical point. 1.33.
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bonds within this grougenergy. On the other hand, it will too. In our model particles are chosen randomly and such
also increase the probability that a certain member will leaveorrelations are omitted.

the group(entrqpy. Competition of thl_s two eﬁgpts is likely ACKNOWLEDGMENTS

to produce a similar symmetry-breaking transition to the one
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