
PHYSICAL REVIEW E, VOLUME 65, 031307
Urn model of separation of sand
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We introduce an urn model that describes spatial separation of sand. In this dynamical model, in a certain
range of parameters spontaneous symmetry breaking takes place and equipartitioning of sand into two com-
partments is broken. The steady-state equation for an order parameter, a critical line, and the tricritical point on
the phase diagram are found exactly. The master equation and the first-passage problem for the model are
solved numerically and the results are used to locate first-order transitions. Exponential divergence of a certain
characteristic time shows that the model can also exhibit very strong metastability. In certain cases character-
istic time diverges asNz, whereN is the number of balls andz5

1
2 ~critical line!, 2

3 ~tricritical point!, or 1
3

~limits of stability!.
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I. INTRODUCTION

Recently, granular systems have been intensively stu
using methods of statistical physics. The main motivation
this research is to get a basic understanding of these tec
logically important materials whose behavior, however, v
often appears elusive and mysterious@1,2#.

One of the classical experiments in this field concerns
spatial separation of shaken sand@3#. In this experiment one
uses a box that is divided into two equal compartments b
wall that has a narrow horizontal slit at a certain heig
When the box is filled with a sand and shaken, one obse
that under certain conditions~e.g., frequency and amplitud
of shaking! one compartment of a box is preferentially fille
with sand. Theoretical arguments to understand how
symmetry breaking arises in this experiment were given
Eggers @4#. In his approach, Eggers studied a continuo
model based on partial differential equations that takes
account certain particular characteristics of shaken gran
systems@5#; namely, the fact that effective temperature o
granular system decreases when the density of particle
creases. This, at first counterintuitive, feature of granular s
tems is now understood as a result of inelastic collisio
between particles that effectively cool the system@7#. This
feature is also responsible for the symmetry breaking in
experiment with shaken sand. Indeed, with nonequal dis
bution of sand the temperature in the compartment with
majority of particles is substantially reduced. Consequen
particles from this compartment are less likely to cross
slit. Eggers has shown that a continuous phase transition
companies the symmetry breaking. The approach used
Eggers was generalized for a larger number of compartm
separating the box. It was shown that in such a case
phase transition becomes discontinuous@8#.

Eggers’s model is, however, quite complicated and
analysis must be supplemented with some simplifying
sumptions. The analysis of fluctuations or dynamical prop
ties seems to be particularly difficult for this model. A po
sible alternative might be to examine a different, presuma
simpler model, which would nevertheless grasp the esse
of the phenomena.
1063-651X/2002/65~3!/031307~7!/$20.00 65 0313
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The main goal of the present paper is to define and a
lyze such a model. Our model is a certain generalization
the urn model introduced by Ehrenfest@9#. In the Ehrenfest
model one has balls that are distributed between two u
and certain dynamical rules according to which balls c
change their location. The Ehrenfest model greatly cont
uted to the understanding of some basic notions of statis
mechanics such as the equilibrium or approach to the e
librium. Various modifications of this model were examine
@10#.

At first sight it seems natural that the Ehrenfest mo
could provide an approximate description of experime
with shaken sand. However, none of its generalizations
scribed in the literature exhibits a spontaneous symm
breaking@11#. The modification that we propose does exhi
a spontaneous symmetry breaking. Although the mode
rather simple it exhibits a rich behavior. In addition to havi
a line of continuous transitions, the model has a tricritic
point and a line of discontinuous transitions. The discontin
ous transitions are screened by very strong metastability.
existence of this, in fact unobservable~due to metastability!
transition in our dynamical model requires, however, so
comments. In equilibrium systems it is the free energy t
unambiguously determines the phase, which is stable fo
given set of parameters. For our dynamical model we do
know how to calculate the free energy. Nevertheless, cer
features enabled us to locate the discontinuous transition
our model. Namely, probability distribution of the order p
rameter exhibits characteristics that are typical to equilibri
systems with discontinuous transitions. Additional eviden
of such a transition in our model comes from the analysis
characteristic times, which we determine solving numerica
the first-passage problem.

Our paper is organized as follows. In Sec. II, we introdu
the model and examine its steady-state properties. In Sec
from the solution of the master equation we analyze
steady-state probability distribution and fluctuations in t
model. Section IV is devoted to the metastable properties
characteristic times obtained from the solution of the fir
passage problem. Conclusions and possible extensions o
work are discussed in Sec. V.
©2002 The American Physical Society07-1
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II. MODEL AND ITS STEADY STATE

Our model is defined as follows:N particles are distrib-
uted between two urnsA andB and the number of particle
in each urn is denoted asNA and NB , respectively (NA
1NB5N). Particles in a given urn are subject to therm
fluctuations and the temperatureT of the urn depends on th
number of particles in it. To mimic the effect that a larg
number of particles leads to a smaller temperature, we
the following rule:

T~nA,B!5T01D~12nA,B!, ~1!

wherenA,B5NA,B /N is a fraction of a total number of par
ticles in a given urn andT0 and D are positive constants
With such a choice, temperatures of urns changes line
with nA,B from the valueT0 to T01D. For granular systems
the relation between temperature and the number of part
is very complicated and depends on certain parameters
as density of particles or the type of driving@5#. For the
experiment with separation of sand certain arguments s
gest thatT;nA,B

22 would be more suitable@4#, however, in-
dications of the linear dependence like Eq.~1! can also be
found in the literature@6#. With a choiceT;nA,B

22 the loca-
tion of the critical point changes withN. As expected on
general grounds, the observed behavior for finiteN is only a
crossover and a well-defined phase transition exists onl
the limit N→`. Our choice~1!, leads to results that are we
defined in the thermodynamic limitN→`. However, it
would be interesting to examine other choices too.

Next, we assume that particles within a given urn ob
the standard Maxwell-Boltzmann distribution. It means th
their distribution changes with the heightz ~above the bottom
of an urn! as

pA,B~z!5
mgNA,B

T~nA,B!
expF 2mgz

T~nA,B!G , ~2!

wherem is the mass of a particle andg is the gravitational
acceleration. One can easily calculate that the fraction
particles obeying distribution~2!, which are above a certai
heighth is given as exp@2mgh/T(nA,B)#. Next, we define dy-
namics of our model as follows:~i! One of theN particles is
selected randomly.~ii ! With probability exp@2mgh/T(nA,B)#
the selected particle changes urns. (nA,B is the fraction of
particles present in the urn of the selected particle!. In the
following, we assume that temperature is measured in u
such thatmgh51. It means that our model is parametriz
only by T0 andD. The Ehrenfest model is recovered in th
limit of infinite temperature where every selected parti
changes urns.

We definee as a measure of the difference in the occ
pancy of the urns,

e5
NA2NB

2N
. ~3!

For our model, one can find a simple, but exact equation
determines the time average^e& in the steady state. Indeed
in the steady state the flux of particles changing their po
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tions fromA to B equals to the flux fromB to A. It is easy to
realize that since the selected particles are uncorrelated
above requirement can be written as

^NA&expF 21

T~^NA /N&!G5^NB&expF 21

T~^NB /N&!G . ~4!

Using the parameter̂e& and the relationNA1NB5N, Eq.
~4! can be written as

S 1

2
1^e& DexpF 21

TS 1

2
1^e& D G5S 1

2
2^e& DexpF 21

TS 1

2
2^e& D G .

~5!

Of course, Eq.~5! admits symmetric solution̂e&50 for any
T0 andD. However, a physically satisfactory solution mu
be stable with respect to fluctuations. To make the stab
analysis ofe50 solution of Eq.~5!, we have to expand it in
powers ofe. Equating linear terms we obtain that the critic
line that separates stable and unstable regions for symm
solution is given as

T0
c5AD/22D/2. ~6!

This line is plotted as a solid line in Fig. 1.
What is more interesting, however, Eq.~5! has also asym-

metric solutions witĥ e&Þ0. Although such solutions can
not be written in a closed form, they can be easily det
mined numerically. An example of such a solution is sho
in Fig. 2. In addition, expanding Eq.~5! in powers of^e&,
one can easily check that in the vicinity of the critical poi
u^e&u;(T02T0

c)1/2, which recovers an equilibrium mean
field exponentb51/2 ~we assume thatD is kept constant!.

It turns out, however, that in a certain region of pha
diagram both symmetric and asymmetric solutions are sta
~see Fig. 1!. It suggests that in this region a line of disco
tinuous transition should exist. This line would meet a cr
cal line at a certain point which, by analogy with equilibriu

FIG. 1. Phase diagram of the urn model. Regions I and II
symmetric (̂ e&50) and asymmetric (^e&Þ0) phases, respectively
In region III ~IV ! the symmetric~asymmetric! phase is metastable
~see text!. The solid line is the critical line~6!. The thick dotted line
is the line of first-order phase transitions. The tricritical po

( 2
3 ,(A321)/3) is denoted ash.
7-2
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URN MODEL OF SEPARATION OF SAND PHYSICAL REVIEW E65 031307
systems@12#, can be called a tricritical point. Location of th
point can be easily determined from Eq.~5!. Indeed, required
that the third-order~in e) coefficients are the same@13# and
taking in account Eq.~6!, we obtain the tricritical point is
located at D5 2

3 , T05(A321)/3. However, it is by no
means obvious how to determine the line of discontinu
transitions in our model. In equilibrium systems, one c
calculate the free energy of each phase and this line is d
mined from the condition that the free energy of both pha
are equal. Our model is not an equilibrium system and
procedure cannot be used. Nevertheless, as we will s
below, behavior of certain quantities show striking similar
to equilibrium counterparts. With this observation we will b
able to locate discontinuous transitions in our model. To
dress this problem, we have to go beyond the steady-s
Eq. ~5!, which is the subject of the following section.

III. MASTER EQUATION

For our urn model one can write evolution equations
the probability distributionp(M ,t) that in a given urn~say
A) at the timet there areM particles. These equations eas
follow from the dynamical rules,

p~M ,t11!5
N2M11

N
p~M21,t !v~N2M11!

1
M11

N
p~M11,t !v~M11!1p~M ,t !

3H M

N
@12v~M !#1

N2M

N
@12v~N2M !#J

for M51,2, . . . ,N21,

p~0,t11!5
1

N
p~1,t !v~1!1p~0,t !@12v~N!#,

p~N,t11!5
1

N
p~N21,t !v~1!1p~N,t !@12v~N!#,

~7!

FIG. 2. Absolute value of the order parameteru^e&u as a function
of T0 for D50.5. The solid line corresponds to the numerical so
tion of Eq. ~3!. Monte Carlo simulations were made forN5500
(1) and 5000(*).
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wherev(M )5exp@21/T(M /N)#. For v(M )[1 the above
equation are equivalent to the ones of the Ehrenfest mo
@9#. Supplementing the above equations with initial con
tions one can solve them numerically@14#. Examples of such
solutions in a long-time limit are shown in Fig. 3.

As expected, one finds a single- and double-peak dis
bution in regions I and II, respectively. The width of the
peaks decreases with the number of particlesN. The behavior
of the probability distribution in regions III and IV is how
ever more complicated. Although for smallN it has three-
peak structure, the shape changes in the limitN→`. The
final distribution depends whether the parametersD andT0
are in region III or IV. In region III, for increasingN, the
central peak diminishes and in the limitN→` we obtain a
two-peak distribution. On the other hand, in region IV on
the central peak survives in the thermodynamic limit. As
will show, a line that separates these two regions can
interpreted as a line of discontinuous transitions. Before
approximately locate this line, let us study fluctuations of t

-

FIG. 3. Probability distributionp@N(e1
1
2 ),t# obtained as a nu-

merical solution of Eq.~7! in the long-time limit (N5200).
7-3
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ADAM LIPOWSKI AND MICHEL DROZ PHYSICAL REVIEW E 65 031307
order parameter. Since we know the probability distributi
these fluctuations can be calculated numerically, with
making additional assumptions@4#. Using the variance of the
order parameter we define the susceptibilityk as

k5N^~e2^e&!2&5
1

N H (
i 50

N

i 2p~ i ,`!2F(
i 50

N

ip~ i ,`!G2J ,

~8!

where p( . . . ,`) denotes the steady-state probabilities o
tained from Eqs.~7!. Susceptibility is known to diverge a
the continuous phase transition. Our calculations forD
50.5 confirm such a behavior~Fig. 4!. For T0.0.25 the
inverse susceptibilityk21 decays linearly that impliesg51
~mean-field value!. For T0,0.25~asymmetric phase! the be-
havior is less clear but we also expect a linear decay ofk21.

To check our steady-state and master-equation calc
tions we performed Monte Carlo simulations that are a
presented in some cases. The implementation of this me
for the present model is rather straightforward.

Let us notice that the behavior of the probability distrib
tion as seen in Fig. 3 bears some similarity to equilibriu
systems. In particular, it is known that the simultaneous
istence of peaks of both phases is an indicator of the fi
order phase transitions@15#. Although our model is defined
only using dynamical rules and thus has no free energy~at
least as defined for equilibrium systems! it does exhibit some
other features typical to equilibrium systems. To precis
locate the transition point we calculated the scaled susce
bility k/N. We expect that when only a single peak surviv
k/N vanishes, while it remains positive in the double-pe
region. ForT050.2 the obtained results~Fig. 5! locate the
transition aroundD51.31. As we will see in the following
section there is also a dynamical indicator of this transiti

IV. METASTABILITY AND THE CHARACTERISTIC TIME

Analysis of the probability distribution for our dynamica
model, which was done in the preceding section shows s

FIG. 4. Inverse of the susceptibilityk21 as a function ofT0 for
D50.5. The solid line corresponds to the numerical solution of
~3! for N55000. Monte Carlo simulations were made forN
55000
(1). In the asymmetric phase (T0,0.25) to calculatek we used
only a half of the probability distribution.
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similarity to equilibrium discontinuous transitions. It i
known that such transitions are usually accompanied
metastability. In the present section, we examine such eff
in our model.

The most transparent indication of metastability is hyst
esis. That our model exhibits such a behavior is clearly s
in Fig. 6. One can see, that upon increasingD, the system
prepared in the asymmetric state remains in this state u
D;1.7 that is close to the limits of stability of this state~see
Fig. 1!. On the other hand, whenD decreases the symmetr
state persists up toD;1.1 that is again close to the limits o
stability of symmetric phase. Simulations show that t
range of the hysteresis only slightly depends on the sys
size and the simulation time. For large system sizes
model will persist in the initial state until the limits of sta
bility of this state are reached, as calculated from the stea
state equation~5!. Such a behavior indicates a very stron
metastability. As we will show below, in regions III and IV
of the phase diagram certain characteristic times diverge
ponentially with the system size that corresponds to the b
ken ergodicity~i.e., dynamical phase space of the model
decomposed into disconnected sectors!. Let us notice that in
~short-ranged! equilibrium systems metastability has alwa

.
FIG. 5. Scaled susceptibilityk/N as a function ofD for T0

50.2 obtained from the numerical solution of Eq.~7! for N550,
100, 200, 300, and 500.

FIG. 6. Absolute value of the order parameteru^e&u as a function
of D for T050.2 calculated using Monte Carlo simulations forN
52000. Two runs were made withD increasing (1) and decreasing
(h), respectively. Due to strong metastability no sign of the tra
sition exists forD51.31.
7-4
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URN MODEL OF SEPARATION OF SAND PHYSICAL REVIEW E65 031307
a finite lifetime and longer simulations or larger system s
shrink the hysteresis.

To examine the metastable properties of our model furt
we will calculate certain characteristic times. It is known th
for urn models some of these quantities can be calculate
the so-called first-passage problem. We will use a sim
approach. More specifically, let us consider a configurat
where there areM andN2M balls in urnA andB, respec-
tively (N even!. Now, we define an average timet(M ,N
2M ) needed for such a configuration to reach a symme
configuration (M5N/2). From the dynamical rules of ou
model one finds thatt(M ,N2M )’s obey the followingN/2
linear equations~to simplify notation we omit the secon
argument int ’s!:

t~N!5v~N!@t~N21!11#1@12v~N!#@t~N!11#,

t~N21!5
N21

N
v~N21!@t~N22!11#1

1

N
v~1!

3@t~N!11#1F12
N21

N
v~N21!2

1

N
v~1!G

3@t~N21!11#,

•••

t~M !5
M

N
v~M !@t~M21!11#1

N2M

N
v~N2M !

3@t~M11!11#1F12
M

N
v~M !2

N2M

N

3v~N2M !G@t~M11!11#,

•••

t~0.5N11!5S 0.51
1

NDv~0.5N11!1S 0.52
1

ND
3v~0.5N21!@t~0.5N12!11#

1F12S 0.51
1

NDv~0.5N11!

2S 0.52
1

NDv~0.5N21!G
3@t~0.5N11!11#. ~9!

Similar equations can be written for the Ehrenfest mo
@16#.

We were unable to write an explicit solution of the abo
set of equations. However, its tridiagonal structure grea
simplifies its numerical solution. In particular, the so-call
Gaussian elimination can be used to calculatet ’s recursively
@17#. Since implementation of this algorithm is straightfo
ward we present only final results. Our unit of time corr
sponds to a single on average update per ball, i.e., we di
the timet calculated from Eqs.~9! by N.
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In Fig. 7, we present theD dependence fort(N). This is
the lifetime of totally asymmetric solution. Its rapid increa
~as a function ofN) in certain range ofD indicates the sta-
bility of the asymmetric solution.

To provide more details on the stability of this solution w
have to look at the size dependence of the characteristic
and the results are shown in Figs. 8 and 9. One can see~Fig.
8! that the limits of stability of asymmetric solution, whic
for T050.2 equalsD5Dc(0.2)51.744 067 5. . . , separates
two regimes. ForD.Dc(0.2) t(N) approaches a finite
value for increasingN, while it diverges forD,Dc(0.2).
From Fig. 9 one can conclude that forD,Dc(0.2), t(N)
diverges exponentially fast withN. It confirms our previous
observations, based on Monte Carlo simulations, that a g
phase persists up to the limits of its stability.

From Fig. 10 it follows that at the limits of stabilityt(N)
increases but as a power ofN. From the slope of these dat
we estimate that both forT050.2 and 0.15t;N1/3. A differ-
ent exponent governs the increase oft(N) along the critical
line ~6! @18#. In this case we findt(N);N1/2, while at the
tricritical point N2/3 increase is observed~see Fig. 10!. It
would be desirable to explain such simple power laws us
analytical arguments.

The above results concern the behavior oft(N). We have
shown that this quantity can be used to locate the critical
or the limits of stability of the asymmetric solution. How

FIG. 7. Characteristic timet(N) as a function ofD for ~from the
bottom! N550, 100, 200, and 300.

FIG. 8. Characteristic timet(N) as a function ofN for T0

50.2 and ~from the left! D51.65, 1.7, 1.72, 1.735, and 1.74
Dc(0.2)51.744 067 5. . . , 1.77, and 1.8.
7-5
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ADAM LIPOWSKI AND MICHEL DROZ PHYSICAL REVIEW E 65 031307
ever, this quantity does not provide any indication of t
discontinuous phase transition that we located between
gions III and IV on Fig. 1. To have a dynamical indication
this transition we have to look for other characteristic tim
First, let us notice~Fig. 11! that in region II the distribution
of t ’s as function ofM is rather flat that means that there
basically a single time scale in the model. In regions III a
IV, however, one can see a more pronounced variability
t(M ). In Fig. 12, we show thatt(0.5N11) ~which is the
shortest of ourt ’s! can be used to locate a discontinuo
phase transition. Indeed, this quantity increases expo
tially fast with N for D,1.31 and remains bounded for larg
values ofD. The change of behavior oft(0.5N11) coin-
cides, within our numerical accuracy, with the change of
probability distribution as shown in Fig. 5.

Let us also notice that the time scale reached in the
merical solution of Eq.~9! (;1014) is much larger than wha
is accessible using Monte Carlo simulations. The main lim
tation in our calculations is finite accuracy of the compu
tions. Using longer representations of real numbers~we used
the FORTRAN real*8 type! one can study much larger tim
scales.

FIG. 10. Characteristic timet(N) as a function ofN calculated
at (D,T0) equal to ~solid lines, from the top!: (0.25,A0.25/2
20.25/2), ~0.5,0.25!, ~1.744 067 5,0.2!, and ~6.775 493 . . . ,0.15!.
For two upper lines the points (D,T0) are on the critical line~6!,
while for bottom ones, they are on the lines of the limits of stabil
of the asymmetric solution. The dotted line corresponds to the
critical point.

FIG. 9. Characteristic timet(N) as a function ofN for T0

50.2 and~from the left! D51.2, 1.3, 1.4, 1.5, 1.6, 1.7, and 1.8.
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V. CONCLUSIONS

In the present paper, we examined an urn model that
dergoes a symmetry-breaking transition. Our work was m
tivated by recent experiments on the separation of sha
sand. The proposed model exhibits a rich behav
~continuous/discontinuous transitions, a tricritical poi
metastability! and its properties could be reliably dete
mined. There are experimental indications that in the thr
compartment case the separation of shaken sand is a dis
tinuous transition@8#. However, due to strong metastabilit
only the hysteretic behavior is observed, similarly as in o
simulations in Fig. 6. Our work suggests, that there are so
indicators ~probability distributions, characteristic times!
which could be used to locate a discontinuous transition
such systems. It would be interesting to look for such in
cators in experimental systems.

As an extension of our work, one can examine mod
with a different relation between the effective temperatu
and the number of particles or models with larger number
compartments. Even further extensions are related wit
much different interpretation of our model. One can imag
that two compartmentsA and B are two groups of people
~e.g., supporters of certain presidential candidates!. It seems
reasonable to assume that under certain conditions a la
number of people in a given group will increase attract

i-
FIG. 12. Characteristic timet(0.5N11) as a function ofN cal-

culatedT050.2 and~from the top! D51.27, 1.29, 1.30, 1.31, and
1.33.

FIG. 11. Distribution of characteristic timest(M ) as a function
of M calculatedT050.2 and~from the top! D50.9, 1.2, 1.5.
7-6
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bonds within this group~energy!. On the other hand, it will
also increase the probability that a certain member will le
the group~entropy!. Competition of this two effects is likely
to produce a similar symmetry-breaking transition to the o
described in the present paper. However, since people
known to create various local connections~e.g., within a
group! it would be desirable to take such effects into acco
rr.

e
.

f

on
o
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too. In our model particles are chosen randomly and s
correlations are omitted.
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C. Godrèche and J.M. Luck,ibid. 32, 6033~1999!, and refer-
ences therein.

@11# Certain urn models do exhibit a symmetry-breaking transiti
However, their essential ingredient is an infinite number
v.

.
f

urns which is not suitable for our purposes. For details see
Białas, L. Bogacz, Z. Burda, and D. Johnston, Nucl. Phys
575, 599 ~2000!.

@12# M. Blume, V.J. Emery, and R.B. Griffiths, Phys. Rev. A4,
1071 ~1971!.

@13# One can easily notice that even-order coefficients in the exp
sion of both sides of Eq.~5! are the same and thus cancel ea
other.

@14# Analytical approach to evolution equations~7! seems to be
very difficult since the variableM appears in an exponentia
factor v(M ).

@15# K. Binder and D.P. Landau, Phys. Rev. B30, 1477~1984!.
@16# A. Lipowski, J. Phys. A30, L91 ~1997!; K.P.N. Murthy and

K.W. Kehr, ibid. 30, 6671~1997!.
@17# R. Sedgewick,Algorithms~Addison-Wesley Publishing Com

pany, New York, 1988!.
@18# Actually, only a left-hand~respective to the tricritical point!

portion of the curve~6! can be called a critical line and only o
this part the scalingt(N);N1/2 is observed. The right-hand
side is only the limit of the stability of the symmetric solution
Since the asymmetric solution is stable on this part,t(N) di-
verges exponentially withN.
7-7


